Chimeric recombinases with designed DNA sequence recognition.
نویسندگان
چکیده
Site-specific recombination typically occurs only between DNA sequences that have co-evolved with a natural recombinase enzyme to optimize sequence recognition, catalytic efficiency, and regulation. Here, we show that the sequence recognition and the catalysis functions of a recombinase can be specified by unrelated protein domains. We describe chimeric recombinases with a catalytic domain from an activated multiple mutant of the bacterial enzyme Tn3 resolvase, fused to a DNA recognition domain from the mouse transcription factor Zif268. These proteins catalyze efficient recombination specifically at synthetic target sites recognized by two Zif268 domains. Our results demonstrate the functional autonomy of the resolvase catalytic domain and open the way to creating "custom-built" recombinases that act at chosen natural target sequences.
منابع مشابه
Expression of a Chimeric Protein Containing the Catalytic Domain of Shiga-Like Toxin and Human Granulocyte Macrophage Colony-Stimulating Factor (hGM-CSF) in Escherichia coli and Its Recognition by Reciprocal Antibodies
Fusion of two genes at DNA level produces a single protein, known as a chimeric protein. Immunotoxins are chimeric proteins composed of specific cell targeting and cell killing moieties. Bacterial or plant toxins are commonly used as the killing moieties of the chimeric immunotoxins. In this investigation, the catalytic domain of Shiga-like toxin (A1) was fused to human granulocyte macrophage ...
متن کاملChimeric TALE recombinases with programmable DNA sequence specificity
Site-specific recombinases are powerful tools for genome engineering. Hyperactivated variants of the resolvase/invertase family of serine recombinases function without accessory factors, and thus can be re-targeted to sequences of interest by replacing native DNA-binding domains (DBDs) with engineered zinc-finger proteins (ZFPs). However, imperfect modularity with particular domains, lack of hi...
متن کاملA comprehensive approach to zinc-finger recombinase customization enables genomic targeting in human cells
Zinc-finger recombinases (ZFRs) represent a potentially powerful class of tools for targeted genetic engineering. These chimeric enzymes are composed of an activated catalytic domain derived from the resolvase/invertase family of serine recombinases and a custom-designed zinc-finger DNA-binding domain. The use of ZFRs, however, has been restricted by sequence requirements imposed by the recombi...
متن کاملZinc Finger Recombinases with Adaptable DNA Sequence Specificity
Site-specific recombinases have become essential tools in genetics and molecular biology for the precise excision or integration of DNA sequences. However, their utility is currently limited to circumstances where the sites recognized by the recombinase enzyme have been introduced into the DNA being manipulated, or natural 'pseudosites' are already present. Many new applications would become fe...
متن کاملExpanding the zinc-finger recombinase repertoire: directed evolution and mutational analysis of serine recombinase specificity determinants
The serine recombinases are a diverse family of modular enzymes that promote high-fidelity DNA rearrangements between specific target sites. Replacement of their native DNA-binding domains with custom-designed Cys₂-His₂ zinc-finger proteins results in the creation of engineered zinc-finger recombinases (ZFRs) capable of achieving targeted genetic modifications. The flexibility afforded by zinc-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 100 15 شماره
صفحات -
تاریخ انتشار 2003